SPEECH SEPARATION BY KURTOSIS MAXIMIZATION

James P. LeBlanc
Klipsch School of ECE
New Mexico State University
Las Cruces, NM USA

Phillip L. De León

ABSTRACT
We present a computationally efficient method of separating mixed speech signals. The method uses a recursive adaptive gradient descent technique with the cost function designed to maximize the kurtosis of the output (separated) signals. The choice of kurtosis maximization as an objective function (which acts as a measure of separation) is supported by experiments with a number of speech signals as well as spherically invariant random processes (SIRPs) which are regarded as excellent statistical models for speech. Development and analysis of the adaptive algorithm is presented. Simulation examples using actual voice signals are presented.

1. INTRODUCTION
We address the speech separation problem. Making some assumptions on the statistics of the voice signals we use higher order statistics to separate mixed voices. The use of higher-order statistics is not new to the source separation problem, see ([2] [1], [3], [1], [8] for example). Many of these methods are applied to digital communications signals which inherently belong to a different statistical class than speech signals. Specifically, many such adaptive algorithms used on digital communications signals use the fact that the sequences are sub-Gaussian \(^1\). We note that there are separation algorithms designed for use with speech signals (notably [11] and [10]). Some methods are computationally intensive, necessitating correlation matrix estimation and eigen-decompositions or polycorrelation estimations. As an alternative, the speech separation developed herein is designed to be computationally efficient. We exploit the fact that speech signals are super-Gaussian (i.e. have high kurtosis). Noting this, we may adopt similar strategies using higher order statistics after appropriate modification.

A fundamental idea of many blind separation and blind equalization schemes in the digital communications setting is to note that the sum of sub-Gaussian processes (as occurs with mixing and intersymbol interference) results in a process with statistics that differ from the original process(es). More specifically, the mixture “looks more” Gaussian than the originals. In [7] one finds an excellent discussion of developing measures of Gaussianity. With such a measure, one may construct a cost function, and associated adaptive gradient descent algorithm which minimizes this Gaussianity and results in source separation or intersymbol interference reduction (for the sub-Gaussian digital communications signals). Many possible measures are possible. One which appears quite often is kurtosis.

\(^1\)The term sub-Gaussian may have different meanings among different communities. Here it is used to denote processes having a kurtosis less than the kurtosis of a Gaussian.

The relation of kurtosis to one of the the more popular blind equalization algorithm known as the Constant Modulus Algorithm (CMA) [8] or Godard Algorithm [6] is discussed in [5]. For the separation of speech signals, we modify a source separation algorithm recently proposed for digital communications (sub-Gaussian) signals in [3] which uses the CMA (or Godard) error function. This modification adjusts for the differing statistics between digital communication signals and voice signals.

2. PROBLEM SETTING

The generic two signal separation problem is shown in Figure 1. Two sources \(s_0 \) and \(s_1 \) are mixed through mixing matrix \(A \), resulting in received signals \(x_0 \) and \(x_1 \). The mixing relation is denoted,

\[
X = AS
\]

where \(X = [x_0 \ x_1] \) and \(S = [s_0 \ s_1] \).

\[
\begin{array}{cccc}
 & x_0 & & \\
A & s_0 & \rightarrow & x_1 \\
 & s_1 & \rightarrow & y_0 \\
 & & \rightarrow & y_1
\end{array}
\]

Figure 1. Separation Block Diagram

The goal is to separate out the \(s_0 \) and \(s_1 \) components present in the mixed signals \(x_0 \) and \(x_1 \) through the use of matrix \(W \). Clearly, \(W = A^{-1} \) achieves the desired result (assuming \(A \) is invertible) but, \(A \) is typically unknown. In the blind problem, \(W \) (or similarly \(A \)) must be estimated from knowledge only of the mixture \(X \). The second order statistics of \(X \) (i.e. the autocorrelation matrix \(R_{XX} \)) do not provide enough information. For this reason higher order statistics are often considered. However, the use of higher order statistics often requires further assumptions on the distributions of \(S \). In the blind separation problem (as well as the blind equalization problem), the source distributions are typically considered to be sub-Gaussian in the sense that their kurtosis is below that of a Gaussian. The kurtosis \(^2\) of a zero mean random variable \(x \) is defined as the dimensionless, scale invariant quantity,

\[
\kappa_x = \frac{E\{x^4\}}{(E\{x^2\})^2}
\]

where \(E\{\cdot\} \) is the expectation operator. For any random variable we have \(\kappa \geq 1 \), and for a Gaussian distribution \(\kappa = 3 \).

\(^2\)The reader is cautioned that some texts define kurtosis a bit differently as \(\kappa_x = \frac{E\{x^4\}}{(E\{x^2\})^2} - 3 \). We shall however follow the definition above as found in [13].
3. DISTRIBUTIONS WITH $\kappa < 3$ ARE CONSIDERED SUB-GAUSSIAN (OR
PLATYKURTIC), AND THOSE WITH $\kappa > 3$ ARE LABELED AS SUPER-
GAUSSIAN (OR LEPTOKURTIC).

3. SEPARATION BY KURTOSIS

3.1. Communications Signals

An interesting feature of kurtosis is now noted. Let u_0 and u_1 be two independent, identically distributed (i.i.d.), zero
mean random variables with kurtosis κ_0. Let $w = u_0 + u_1$ and consider κ_w. It can be shown that κ_w is always closer to 3, than κ_0. More specifically,

$$\text{if } \kappa_0 < 3 \text{ (platykurtic), then } \kappa_w > \kappa_0 \quad (3)$$

$$\text{if } \kappa_0 > 3 \text{ (leptokurtic), then } \kappa_w < \kappa_0 \quad (4)$$

Since, digital communications signal are typically leptokurtic. Given two iid sources, the resulting mixture will have a higher kurtosis. Thus, a logical separation strategy is to minimize the kurtosis, which in effect, is exactly what CMA does. In [3] an iterative separation algorithm from digital communications signals utilizing the CMA error function is presented as

$$W_{n+1} = W_n - \mu \nabla W (\phi(W)) \quad (5)$$

where μ is the small adaptive stepsize, and $\nabla W (\phi(W))$ denotes the gradient of ϕ. Given as

$$\phi(W) = \sum_{i=1}^{N} E \{ (x_i^2 - 1)^2 \} - \ln(\det |W|) \quad (6)$$

in which the first term is as the CMA cost function, while the second term associates a cost to duplicating a source at the output Y. The existence of the CMA cost term can be associated with a gradient descent algorithm performing a kurtosis minimization on the output Y. In light of (3), such kurtosis minimization agrees with source separation.

3.2. Speech Signals

We adopt a kurtosis-based strategy for separating speech signal by observing that speech signal are leptokurtic (in contrast to the typically platykurtic communications signals). In light of (4), we choose the adaptation objective to be kurtosis maximization. The adaptive algorithm becomes (ignoring for the moment the desire to prevent duplicate sources at output),

$$W_{n+1} = W_n + \mu \nabla W (\kappa Y (W)) \quad (7)$$

where μ is the small adaptive stepsize, and $\nabla W (\kappa Y (W))$ denotes the gradient of the kurtosis of the output Y. For the two channel case, performing the differentiation leads to the update law

$$W_{n+1} = W_n + \mu \begin{bmatrix} -\alpha_1 \beta_1 w_{11} & -\alpha_2 \beta_2 w_{12} \\ -\alpha_1 \beta_2 w_{12} & -\alpha_2 \beta_2 w_{22} \end{bmatrix}$$

where

$$\alpha_i = 4(w_{i1} w_{11} + w_{i2} w_{12})^3$$

$$\beta_i = \frac{1}{2}(\alpha_1 \beta_1 + \alpha_2 \beta_2)$$

and $\sigma_1^2 = E \{ x_i^2 \}, \sigma_2^2 = E \{ x_i^4 \}, r_{12} = E \{ x_1 x_2 \}$. In true implementation, knowing the actual values of σ_1^2, σ_2^2, and r_{12} a priori is not possible but these may be replaced by simple autoregressive estimators of the form

$$\sigma_i^2 = \lambda \sigma_i^2 + (1 - \lambda) r_{i1} \quad (8)$$

$$r_{12} = \lambda r_{12} + (1 - \lambda) x_1 x_2 \quad (9)$$

where λ is the estimator's forgetting factor. It should also be noted that a scaling factor is incorporated into the algo-
rithm, since kurtosis is a scale invariant quantity.

The critical assumption here is that the kurtosis of two mixed voice signals has a lower kurtosis than the individual kurtosis values (as hinted at by (4)). However, in the strict sense, (4) is not necessarily always true for speech signals due to the temporal correlation of speech. There is much evidence derived from studies with sampled speech that this relation in (4) often holds true. This issue is addressed in the next section.

4. SPEECH, SIRPS, AND MIXTURE KURTOSIS

The underlying assumption for the proposed speech signal separation technique is that mixtures of speech signals have a kurtosis lower than the kurtosis values of the individual speech signals. In this section we offer evidence which supports this assumption based on actual speech signals and statistical models for speech.

Eight individual speech signals were sampled and the kurtoses computed. In addition, the kurtosis of a mixture ($\alpha_0 = \alpha_0 + (1 - \alpha_0) \alpha_1$) of the speech signals was also computed. The results are shown in Figure 2 (solid line). We note that for the 50%/50% mixture ($\alpha = 0.5$), the individual speech signals are higher in kurtosis than the mixture for 53% of the studied cases. This indicates that the speech signals will begin to separate from the mixture based on the kurtosis maximization algorithm. As separation progresses, some of these mixtures may cease further separation (as defined by power ratios), as indicated by the lower probability of both individual kurtosis being higher than the mixture kurtosis (Figure 2). However, we have observed in our experiments that there is always one speech signal that is higher in kurtosis than the mixture, indicating that at least this one speech signal could be separated from the mixture; the remaining speech signal might be subsequently separated from residual signal analysis and processing.

Historically, speech probability density functions (PDFs) have been modeled with either the Laplace or Gamma PDF [14][15]. For these two PDFs, it can be shown that the kurtosis of the sum of these PDFs is lower than the kurtosis values of the individual PDFs. More recently, refinement in the speech model has been achieved through the use of Spherically Invariant Random Processes (SIRPs) also known as circularly or spherically symmetric random processes [16],
The use of SIRPs to model speech signals is based on the facts that many random processes are SIRPs including those with Laplace and Gamma PDFs and that actual speech bivariate PDFs (three dimensional amplitude histogram taken from samples of speech signals spaced t < 5ms apart) have been shown to exhibit SIRP-like qualities [18], [19], [17]. Based on work by Brehm, the SIRP which includes the Gaussian, Laplace, Gamma, and K_0 PDFs, was found to be especially suited to modeling the measured densities of speech signals. By continuous variation of b_1 and b_2, a whole family of modeling PDFs may be generated, one of which may be a better approximation to the speech PDF than Laplace or Gamma PDFs. Brehm and Stammmer found that speech PDFs can be closely matched by choosing

$$-0.4 \leq b_1 \leq \frac{-1}{3} \tag{8}$$

and

$$b_2 \geq 0.25 \tag{9}$$

Furthermore, when the time shift between the two speech signals used to compute the bivariate speech PDF is less than 3.8 ms, the bivariate PDF corresponding to SIRP fits the observed contour lines in the bivariate PDF very well [17].

Five SIRPs were modeled according [17] and the Kurtoses computed. In addition the kurtosis of a mixture (αSIRP + $(1-\alpha)$SIRP) of the SIRPs was also computed. The results are shown in Figure 2 (dashed line). In all 50%-50% mixture cases, $\kappa_S^2 < \kappa_0^2$, the individual SIRPs are higher in kurtosis than the mixture meeting the assumed necessary conditions for the proposed algorithm.

5. SEPARATION EXAMPLES

In this section the performance of the algorithm in (8) is demonstrated using two separation examples (case I and case II). Here, the mixing matrices are arbitrarily chosen.

5.1. Case I

$$A_{s1} = \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}, \tag{10}$$

s_0 and s_1 are sampled speech of a male speakers reading different text segments of a text book with $\kappa_{S_0} = 14.9$ and $\kappa_{S_1} = 15.2$.

stepsize	$\mu = 10^{-6}$
moment est., forgetting factor	$\lambda = 0.999$
separation matrix initialization	$W(0) = \begin{bmatrix} 1 & 0.1 \\ 0.1 & 1 \end{bmatrix}$
initial moment estimates	$\hat{\rho}_{10}(0) = 0.1$, $\hat{\sigma}_0(0) = 0.1$, $\hat{\sigma}_1(0) = 0.1$

Table 1. Example Simulation Parameters

$\kappa_{S_0} = 14.2$, the received mixtures x_0 and x_1 have kurtosis values of $\kappa_{S_0} = 11.6$ and $\kappa_{S_1} = 11.1$ verifying the assumption on mixed speech signals having lower kurtosis. The severity of the mixing tends to signals x_0 and x_1 unidentifiable.

Plotted below are the power ratios of the s_0 and s_1 components in both y_0 and y_1 which provides a measure of the separation of the source components are the output. The adaptation parameters are found in Table 1.

Figure 3. Case I of Source Separation using Algorithm

The achieved separation is very good, exceeding 40dB on both channels at times. Qualitatively, listening to the resulting separated signals, the second speech signal was virtually imperceptible.

5.2. Case II

Here s_0 and s_1 are different speakers reading text segments of a text book with $\kappa_{S_0} = 27.9$ and $\kappa_{S_1} = 11.3$. The mixing matrix

$$A_{s1} = \begin{bmatrix} 0.8 & 0.2 \\ 0.7 & 0.3 \end{bmatrix}, \tag{11}$$

is used resulting in received mixtures x_0 and x_1 have kurtosis values of $\kappa_{S_0} = 24.9$ and $\kappa_{S_1} = 20.8$. Note here that one mixture violates the assumption that the necessary assumption and only one source is separated. This is thought to be due to the widely disparate source kurtoses.

Again, the power ratios of source components are plotted using the algorithm with the same parameters. The achieved separation on one output is very good, again exceeding 40dB on one channel. However, at the other output channel little separation is achieved (about constant at 10dB). But, since excellent separation has been achieved at
the other output, it is possible to perform further processing using residual signal analysis.

6. CONCLUSION

We have adopted some ideas and results from the digital communications community used in the blind source separation and blind equalization problem and modified them for use in the speech separation problem. The presentation of an algorithm along with its motivation is described through the concept of kurtosis maximization with leptokurtic signals. While originally based on heuristics, the analysis of SIRPs in relation to statistical speech models provides a strong framework for analysis. Initial analysis supports the conjecture regarding speech mixing and kurtosis effects for reasonable known SIRP modeling bounds on human voice.

REFERENCES

